This is joint work with Johannes.
The paper will be on the arxiv soonish :)
Schrödinger's cat!
What else?
Macroscopic superpositions
Molecules, atomic gases, superconducting qubits, nanomechanics, …
Macroscopic Realism
Legget, Garg 1985
The world view that macroscopic physical properties
are independent of measurements.
Conditions for Macrorealism
1. Macrorealism
per se
A macroscopic object occupies
a definite macrostate at all times.
Conditions for Macrorealism
2. Noninvasive Measurements
It is possible to measure the state
without changing it (or the future evolution).
Conditions for Macrorealism
3. Arrow of time
4. Freedom of choice
Mathematical formulation?
A simple experiment
Macro-observable $Q = \pm 1$
Measurements at times $t_0, t_1, t_2$ with outcomes $Q_i$
Correlations $C_{ij} \equiv \langle Q_i Q_j\rangle = p_{++} + p_{--} - p_{+-} - p_{-+}$
Macrorealism =
Joint Probability Distribution
$$P(Q_0, Q_1, Q_2)$$
at times $t_0$, $t_1$, $t_2$
$$C_{01} = [P(+,+,+) + P(+,+,-)] \\+ [P(-,-,+) + P(-,-,-)] \\- [P(+,-,+) + P(+,-,-)] \\- [P(-,+,+) + P(-,+,-)] $$
$$C_{01} + C_{12} - C_{02} = 1 - 4[P(+,-,+) + P(-, +, -)]$$
MR ⇒ LGI
… but not the other way
LGI cannot detect every violation of MR, see later
Joint Probability
$$P(Q_0, Q_1, Q_2)$$
Let's call it
$$P_{012}(Q_0, Q_1, Q_2)$$
Measurements matter!
$$P_{12}(Q_1, Q_2) \neq P_{012}(Q_1, Q_2)$$
More NSITs
$$\text{NSIT}_{(0)1}:~P_{1} = P_{01}$$
$$\text{NSIT}_{(1)2}:~P_{2} = P_{12}$$
$$\text{NSIT}_{(0)2}:~P_{2} = P_{02}$$
$$\text{NSIT}_{0(1)2}:~P_{02} = P_{012}$$
$$\text{NSIT}_{(0)12}:~P_{12} = P_{012}$$
Trivial: Arrow of time
$$\text{NSIT}_{0(1)}:~P_{0} = P_{01}$$
$$\text{NSIT}_{0(2)}:~P_{0} = P_{02}$$
$$\text{NSIT}_{1(2)}:~P_{1} = P_{12}$$
$$\text{NSIT}_{01(2)}:~P_{01} = P_{012}$$
Revisiting LGI
$$C_{01} + C_{12} - C_{02} \leq 1$$
$$C_{01} \rightarrow C_{01(2)}$$
$$C_{12} \rightarrow C_{(0)12}$$
$$C_{02} \rightarrow C_{0(1)2}$$
LGI from NSIT
$$C_{01} + C_{12} - C_{02} \leq 1$$
$$\text{AoT}:~P_{01} = P_{012}$$
$$\text{NSIT}_{(0)12}:~P_{12} = P_{012}$$
$$\text{NSIT}_{0(1)2}:~P_{02} = P_{012}$$
Maroney, Timpson (2014)
We've only used 2,3
joint probabilitites
What about the
other NSITs?
NSITs
⇕
macrorealism012
NSIT(1)2 + NSIT0(1)2 + NSIT(0)12 + AoT ⇔ MR012
Example
qubit / Mach-Zehnder
interferometer
Mixed initial states $P(+) = q$.
Mach-Zehnder Interferometer
|
$R_1 = R_2 = \frac{1}{2}$ |
$R_1 = \frac{1}{4}, R_2 = \frac{3}{4}$ |
$\text{LGI}_{012}$ |
|
$1 + 3 \cos \varphi \geq 0$ |
$\text{NSIT}_{(1)2}$ |
$q = \frac{1}{2}$ or $\varphi = \frac{n\pi}{2}$ |
$q = \frac{1}{2}$ or $\varphi = \frac{n\pi}{2}$ |
$\text{NSIT}_{0(1)2}$ |
$\varphi = \frac{n\pi}{2}$ |
$\varphi = \frac{n\pi}{2}$ |
$\text{NSIT}_{(0)12}$ |
|
|
What does NSIT
mean in practice?
NSIT(0)T
$$P_{\hat B}(b) = \operatorname{tr}(\hat B_b \hat U_T \hat \rho_0 \hat U_T^\dagger \hat B_b^\dagger)$$
$$\bar P_{\hat B|\hat A}(b) = \int \text{d}a\,\operatorname{tr}(\hat B_b \hat U_T \hat A_a \hat \rho_0 \hat A_a^\dagger \hat U_T^\dagger \hat B_b^\dagger)$$
NSIT(0)0
$$P_{\hat B}(b) - \bar P_{\hat B|\hat A}(b) = \int \text{d}a\,\operatorname{tr}([\hat A_a \hat B_b, \hat B_b \hat A_a] \hat \rho_0) = 0$$
$$\int \text{d}a\,[\hat A_a \hat B_b, \hat B_b \hat A_a] = 0$$
General NSIT(0)0
$$\forall \rho_0: \text{NSIT}_{(0)0} \Leftrightarrow \int \text{d}a\,[\hat A_a \hat B_b, \hat B_b \hat A_a] = 0$$
For projectors
$$\forall \rho_0: \text{NSIT}_{(0)0} \Leftrightarrow [\hat A_a, \hat B_b] = 0$$
NSIT(0)T
$$P_{\hat B}(b) = \operatorname{tr}(\hat B_b \hat U_T \hat \rho_0 \hat U_T^\dagger \hat B_b^\dagger)$$
$$\bar P_{\hat B|\hat A}(b) = \int \text{d}a\,\operatorname{tr}(\hat B_b \hat U_T \hat A_a \hat \rho_0 \hat A_a^\dagger \hat U_T^\dagger \hat B_b^\dagger)$$
define $\tilde B_b^T \equiv \hat U_T^\dagger \hat B_b \hat U_T$
General NSIT(0)T
$$\forall \rho_0: \text{NSIT}_{(0)T} \Leftrightarrow \int \text{d}a\,[\hat A_a \tilde B^T_b, \tilde B^T_b \hat A_a] = 0$$
For projectors
$$\forall \rho_0: \text{NSIT}_{(0)T} \Leftrightarrow [\hat A_a, \tilde B^T_b] = 0$$
We have a condition for
macrorealism of
measurements &
Hamiltonians
we would expect
Two groups of measurements
some fulfill NSIT pairwise
some don't
Classical measurements
fulfill NSIT0(0)
with each member of
a consistent, complete
reference set
Classical Hamiltonians
fulfill NSIT0(T)
with each pair of members of
a consistent, complete
reference set
A-priori choice of
Reference operators
Coarse-grained versions of
quantum measurement operators
Reference operators
- Coarse-grained coherent states
- Unsharp quadrature measurements
- Coarse-grained Fock measurements
$$V = \int \text{d}b \sqrt{P_{\hat B}(b) \bar P_{\hat B|\hat A}(b)} \in [0,1]$$
Bhattacharyya 1943
Coherent states
$$\hat A_\alpha = |\alpha\rangle\langle\alpha|, \hat B_\beta = |\beta\rangle\langle\beta|$$
$$\hat \rho_0 = |\gamma\rangle\langle\gamma|$$
$$V(T = 0) = \frac{2 \sqrt 2}{3} \approx 0.943$$
Coherent state bins
Overlap for different bin sizes
blue: bin border, orange: center of bin
Review
NSIT conditions for Macrorealism
NSIT for operators and Hamiltonians
Classicality